The main aim of Vitae Naturals is maximizing effectiveness in oxidation prevention, and for this reason we have developed a range of antioxidant synergists which consists of blends of tocopherols and other natural ingredients to avoid the oxidation problems of the food industry: (vegetable oils, fish oils rich in Omega 3, animal fats, frying oils, etc).

Foodstuffs, nutraceutical and cosmetical preparations are composed of a wide variety of ingredients, many of which contain lipid substances, such as processed fats and oils from vegetable or animal origin. These components are quite sensible to oxidation processes and they get rancid easily, thereby affecting not only the organoleptic properties (colour, odour, and flavour), but also nutritive value or even safety of finished product. Mixed tocopherols are considered natural antioxidants “par excellence”.

They are the only natural primary antioxidant, working in two different ways:

- Preventing autoxidation process by reducing the rate of chain initiation.
- Extending induction period and reducing oxidation rate.

Vitae Naturals develops tailor-made formulations according to their R&D department experience combining natural mixed tocopherols (Vitapherole®) and secondary antioxidants:

- Ascorbyl palmitate is a powerful oxygen scavenger and regenerates tocopherols.
- Rosemary extract is a free radical scavenger.
- Citric acid sequesters heavy metals.
- Lecithin helps with regeneration of primary antioxidants.

By combining different natural antioxidants, the efficacy of individual compounds can be greatly increased and synergy occurs.

Vitae Naturals’ Natural Antioxidant Systems range is produced under the most comprehensive food safety standard, FSSC 22000, and applicable regulations.

Vitae Naturals evaluates its Antioxidant Systems in customer’s fats and oils doing several tests, including “Rancimat” measurement and ToTox test (combining peroxides and anisidine). Thus, we can offer to the customer the most suitable and cost-efficient synergic agent to avoid oxidation.